
Unit-4

Open Source Programming Languages: PHP- Introduction - programming in web environment,

variables, constants, data types, operators, statements, functions, arrays and OOP - string

manipulation and regular expression.

Perl: Perl backgrounder, Perl overview, Perl parsing rules, variables and data -statements and

control structures, subroutines, packages, and modules- working with files and data

manipulation.

PHP- Introduction

PHP started out as a small open source project that evolved as more and more people found out

how useful it was. Rasmus Lerdorf unleashed the first version of PHP way back in 1994.

 PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

 PHP is a server side scripting language that is embedded in HTML. It is used to manage

dynamic content, databases, session tracking, even build entire e-commerce sites.

 It is integrated with a number of popular databases, including MySQL, PostgreSQL,

Oracle, Sybase, Informix, and Microsoft SQL Server.

 PHP is pleasingly zippy in its execution, especially when compiled as an Apache module

on the Unix side. The MySQL server, once started, executes even very complex queries

with huge result sets in record-setting time.

 PHP supports a large number of major protocols such as POP3, IMAP, and LDAP. PHP4

added support for Java and distributed object architectures (COM and CORBA), making

n-tier development a possibility for the first time.

 PHP is forgiving: PHP language tries to be as forgiving as possible.

 PHP Syntax is C-Like.

Common uses of PHP

 PHP performs system functions, i.e. from files on a system it can create, open, read,

write, and close them.

 PHP can handle forms, i.e. gather data from files, save data to a file, through email you

can send data, return data to the user.

 You add, delete, modify elements within your database through PHP.

 Access cookies variables and set cookies.

 Using PHP, you can restrict users to access some pages of your website.

 It can encrypt data.

Characteristics of PHP

Five important characteristics make PHP's practical nature possible −

 Simplicity

 Efficiency

 Security

 Flexibility

 Familiarity

"Hello World" Script in PHP

To get a feel for PHP, first start with simple PHP scripts. Since "Hello, World!" is an essential

example, first we will create a friendly little "Hello, World!" script.

As mentioned earlier, PHP is embedded in HTML. That means that in amongst your normal

HTML (or XHTML if you're cutting-edge) you'll have PHP statements like this −

<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <?php echo "Hello, World!";?>

 </body>

</html>

It will produce following result −

Hello, World!

If you examine the HTML output of the above example, you'll notice that the PHP code is not

present in the file sent from the server to your Web browser. All of the PHP present in the Web

page is processed and stripped from the page; the only thing returned to the client from the Web

server is pure HTML output.

All PHP code must be included inside one of the three special markup tags ATE are recognised

by the PHP Parser.

<?php PHP code goes here ?>

<? PHP code goes here ?>

<script language = "php"> PHP code goes here </script>

A most common tag is the <?php...?> and we will also use the same tag in our tutorial.

From the next chapter we will start with PHP Environment Setup on your machine and then we

will dig out almost all concepts related to PHP to make you comfortable with the PHP language.

PHP - Environment Setup

In order to develop and run PHP Web pages three vital components need to be installed on your

computer system.

 Web Server − PHP will work with virtually all Web Server software, including

Microsoft's Internet Information Server (IIS) but then most often used is freely available

Apache Server. Download Apache for free here − https://httpd.apache.org/download.cgi

 Database − PHP will work with virtually all database software, including Oracle and

Sybase but most commonly used is freely available MySQL database. Download

MySQL for free here − https://www.mysql.com/downloads/

 PHP Parser − In order to process PHP script instructions a parser must be installed to

generate HTML output that can be sent to the Web Browser. This tutorial will guide you

how to install PHP parser on your computer.

PHP Parser Installation

Before you proceed it is important to make sure that you have proper environment setup on

your machine to develop your web programs using PHP.

Type the following address into your browser's address box.

http://127.0.0.1/info.php

If this displays a page showing your PHP installation related information then it means you

have PHP and Webserver installed properly. Otherwise you have to follow given procedure to

install PHP on your computer.

This section will guide you to install and configure PHP over the following four platforms −

 PHP Installation on Linux or Unix with Apache

 PHP Installation on Mac OS X with Apache

 PHP Installation on Windows NT/2000/XP with IIS

 PHP Installation on Windows NT/2000/XP with Apache

Apache Configuration

If you are using Apache as a Web Server then this section will guide you to edit Apache

Configuration Files.

https://httpd.apache.org/download.cgi
https://www.mysql.com/downloads/
https://www.tutorialspoint.com/php/php_installation_linux.htm
https://www.tutorialspoint.com/php/php_installation_mac.htm
https://www.tutorialspoint.com/php/php_installation_windows_iis.htm
https://www.tutorialspoint.com/php/php_installation_windows_apache.htm

PHP.INI File Configuration

The PHP configuration file, php.ini, is the final and most immediate way to affect PHP's

functionality.

Windows IIS Configuration

To configure IIS on your Windows machine you can refer your IIS Reference Manual shipped

along with IIS.

Escaping to PHP

The PHP parsing engine needs a way to differentiate PHP code from other elements in the page.

The mechanism for doing so is known as 'escaping to PHP'. There are four ways to do this −

Canonical PHP tags

The most universally effective PHP tag style is −

<?php...?>

If you use this style, you can be positive that your tags will always be correctly interpreted.

Short-open (SGML-style) tags

Short or short-open tags look like this −

<?...?>

Short tags are, as one might expect, the shortest option You must do one of two things to enable

PHP to recognize the tags −

 Choose the --enable-short-tags configuration option when you're building PHP.

 Set the short_open_tag setting in your php.ini file to on. This option must be disabled to

parse XML with PHP because the same syntax is used for XML tags.

ASP-style tags

ASP-style tags mimic the tags used by Active Server Pages to delineate code blocks. ASP-style

tags look like this −

<%...%>

To use ASP-style tags, you will need to set the configuration option in your php.ini file.

HTML script tags

HTML script tags look like this −

<script language = "PHP">...</script>

Commenting PHP Code

A comment is the portion of a program that exists only for the human reader and stripped out

before displaying the programs result. There are two commenting formats in PHP −

Single-line comments − They are generally used for short explanations or notes relevant to the

local code. Here are the examples of single line comments.

<?

 # This is a comment, and

 # This is the second line of the comment

 // This is a comment too. Each style comments only

 print "An example with single line comments";

?>

Multi-lines printing − Here are the examples to print multiple lines in a single print statement

−

<?

 # First Example

 print <<<END

 This uses the "here document" syntax to output

 multiple lines with $variable interpolation. Note

 that the here document terminator must appear on a

 line with just a semicolon no extra whitespace!

 END;

 # Second Example

 print "This spans

 multiple lines. The newlines will be

 output as well";

?>

Multi-lines comments − They are generally used to provide pseudocode algorithms and more

detailed explanations when necessary. The multiline style of commenting is the same as in C.

Here are the example of multi lines comments.

<?

 /* This is a comment with multiline

 Author : Mohammad Mohtashim

 Purpose: Multiline Comments Demo

 Subject: PHP

 */

 print "An example with multi line comments";

?>

PHP is whitespace insensitive

Whitespace is the stuff you type that is typically invisible on the screen, including spaces, tabs,

and carriage returns (end-of-line characters).

PHP whitespace insensitive means that it almost never matters how many whitespace characters

you have in a row.one whitespace character is the same as many such characters.

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the variable

$four is equivalent −

$four = 2 + 2; // single spaces

$four <tab>=<tab2<tab>+<tab>2 ; // spaces and tabs

$four =

2+

2; // multiple lines

PHP is case sensitive

Yeah it is true that PHP is a case sensitive language. Try out following example −

<html>

 <body>

 <?php

 $capital = 67;

 print("Variable capital is $capital
");

 print("Variable CaPiTaL is $CaPiTaL
");

 ?>

 </body>

</html>

This will produce the following result −

Variable capital is 67

Variable CaPiTaL is

Statements are expressions terminated by semicolons

A statement in PHP is any expression that is followed by a semicolon (;).Any sequence of valid

PHP statements that is enclosed by the PHP tags is a valid PHP program. Here is a typical

statement in PHP, which in this case assigns a string of characters to a variable called $greeting

−

$greeting = "Welcome to PHP!";

Expressions are combinations of tokens

The smallest building blocks of PHP are the indivisible tokens, such as numbers (3.14159),

strings (.two.), variables ($two), constants (TRUE), and the special words that make up the

syntax of PHP itself like if, else, while, for and so forth

Braces make blocks

Although statements cannot be combined like expressions, you can always put a sequence of

statements anywhere a statement can go by enclosing them in a set of curly braces.

Here both statements are equivalent −

if (3 == 2 + 1)

 print("Good - I haven't totally lost my mind.
");

if (3 == 2 + 1) {

 print("Good - I haven't totally");

 print("lost my mind.
");

}

Running PHP Script from Command Prompt

Yes you can run your PHP script on your command prompt. Assuming you have following

content in test.php file

<?php

 echo "Hello PHP!!!!!";

?>

Now run this script as command prompt as follows −

$ php test.php

It will produce the following result −

Hello PHP!!!!!

Hope now you have basic knowledge of PHP Syntax.

PHP - Variable Types

The main way to store information in the middle of a PHP program is by using a variable.

Here are the most important things to know about variables in PHP.

 All variables in PHP are denoted with a leading dollar sign ($).

 The value of a variable is the value of its most recent assignment.

 Variables are assigned with the = operator, with the variable on the left-hand side and the

expression to be evaluated on the right.

 Variables can, but do not need, to be declared before assignment.

 Variables in PHP do not have intrinsic types - a variable does not know in advance

whether it will be used to store a number or a string of characters.

 Variables used before they are assigned have default values.

 PHP does a good job of automatically converting types from one to another when

necessary.

 PHP variables are Perl-like.

PHP has a total of eight data types which we use to construct our variables −

 Integers − are whole numbers, without a decimal point, like 4195.

 Doubles − are floating-point numbers, like 3.14159 or 49.1.

 Booleans − have only two possible values either true or false.

 NULL − is a special type that only has one value: NULL.

 Strings − are sequences of characters, like 'PHP supports string operations.'

 Arrays − are named and indexed collections of other values.

 Objects − are instances of programmer-defined classes, which can package up both

other kinds of values and functions that are specific to the class.

 Resources − are special variables that hold references to resources external to PHP (such

as database connections).

The first five are simple types, and the next two (arrays and objects) are compound - the

compound types can package up other arbitrary values of arbitrary type, whereas the simple

types cannot.

We will explain only simple data type in this chapters. Array and Objects will be explained

separately.

Integers

They are whole numbers, without a decimal point, like 4195. They are the simplest type .they

correspond to simple whole numbers, both positive and negative. Integers can be assigned to

variables, or they can be used in expressions, like so −

$int_var = 12345;

$another_int = -12345 + 12345;

Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base 16) format. Decimal

format is the default, octal integers are specified with a leading 0, and hexadecimals have a

leading 0x.

For most common platforms, the largest integer is (2**31 . 1) (or 2,147,483,647), and the

smallest (most negative) integer is . (2**31 . 1) (or .2,147,483,647).

Doubles

They like 3.14159 or 49.1. By default, doubles print with the minimum number of decimal

places needed. For example, the code −

<?php

 $many = 2.2888800;

 $many_2 = 2.2111200;

 $few = $many + $many_2;

 print("$many + $many_2 = $few
");

?>

It produces the following browser output −

2.28888 + 2.21112 = 4.5

Boolean

They have only two possible values either true or false. PHP provides a couple of constants

especially for use as Booleans: TRUE and FALSE, which can be used like so −

if (TRUE)

 print("This will always print
");

else

 print("This will never print
");

Interpreting other types as Booleans

Here are the rules for determine the "truth" of any value not already of the Boolean type −

 If the value is a number, it is false if exactly equal to zero and true otherwise.

 If the value is a string, it is false if the string is empty (has zero characters) or is the

string "0", and is true otherwise.

 Values of type NULL are always false.

 If the value is an array, it is false if it contains no other values, and it is true otherwise.

For an object, containing a value means having a member variable that has been

assigned a value.

 Valid resources are true (although some functions that return resources when they are

successful will return FALSE when unsuccessful).

 Don't use double as Booleans.

Each of the following variables has the truth value embedded in its name when it is used in a

Boolean context.

$true_num = 3 + 0.14159;

$true_str = "Tried and true"

$true_array[49] = "An array element";

$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = "";

NULL

NULL is a special type that only has one value: NULL. To give a variable the NULL value,

simply assign it like this −

$my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case insensitive; you

could just as well have typed −

$my_var = null;

A variable that has been assigned NULL has the following properties −

 It evaluates to FALSE in a Boolean context.

 It returns FALSE when tested with IsSet() function.

Strings

They are sequences of characters, like "PHP supports string operations". Following are valid

examples of string

$string_1 = "This is a string in double quotes";

$string_2 = 'This is a somewhat longer, singly quoted string';

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace

variables with their values as well as specially interpreting certain character sequences.

<?php

 $variable = "name";

 $literally = 'My $variable will not print!';

 print($literally);

 print "
";

 $literally = "My $variable will print!";

 print($literally);

?>

This will produce following result −

My $variable will not print!

My name will print

There are no artificial limits on string length - within the bounds of available memory, you

ought to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following

two ways by PHP −

 Certain character sequences beginning with backslash (\) are replaced with special

characters

 Variable names (starting with $) are replaced with string representations of their values.

The escape-sequence replacements are −

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

 \t is replaced by the tab character

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

 \\ is replaced by a single backslash (\)

Here Document

You can assign multiple lines to a single string variable using here document −

<?php

 $channel =<<<_XML_

 <channel>

 <title>What's For Dinner</title>

 <link>http://menu.example.com/ </link>

 <description>Choose what to eat tonight.</description>

 </channel>

 XML;

 echo <<<END

 This uses the "here document" syntax to output multiple lines with variable

 interpolation. Note that the here document terminator must appear on a line with

 just a semicolon. no extra whitespace!

 END;

 print $channel;

?>

This will produce following result −

This uses the "here document" syntax to output

multiple lines with variable interpolation. Note

that the here document terminator must appear on a

line with just a semicolon. no extra whitespace!

<channel>

<title>What's For Dinner<title>

<link>http://menu.example.com/<link>

<description>Choose what to eat tonight.</description>

Variable Scope

Scope can be defined as the range of availability a variable has to the program in which it is

declared. PHP variables can be one of four scope types −

 Local variables

 Function parameters

 Global variables

 Static variables

Variable Naming

Rules for naming a variable is −

 Variable names must begin with a letter or underscore character.

 A variable name can consist of numbers, letters, underscores but you cannot use

characters like + , - , % , (,) . & , etc

There is no size limit for variables.

PHP - Constants Types

A constant is a name or an identifier for a simple value. A constant value cannot change during

the execution of the script. By default, a constant is case-sensitive. By convention, constant

identifiers are always uppercase. A constant name starts with a letter or underscore, followed by

any number of letters, numbers, or underscores. If you have defined a constant, it can never be

changed or undefined.

To define a constant you have to use define() function and to retrieve the value of a constant,

you have to simply specifying its name. Unlike with variables, you do not need to have a

constant with a $. You can also use the function constant() to read a constant's value if you wish

to obtain the constant's name dynamically.

constant() function

As indicated by the name, this function will return the value of the constant.

https://www.tutorialspoint.com/php/php_local_variables.htm
https://www.tutorialspoint.com/php/php_function_parameters.htm
https://www.tutorialspoint.com/php/php_global_variables.htm
https://www.tutorialspoint.com/php/php_static_variables.htm

This is useful when you want to retrieve value of a constant, but you do not know its name, i.e.

It is stored in a variable or returned by a function.

constant() example

<?php

 define("MINSIZE", 50);

 echo MINSIZE;

 echo constant("MINSIZE"); // same thing as the previous line

?>

Only scalar data (boolean, integer, float and string) can be contained in constants.

Differences between constants and variables are

 There is no need to write a dollar sign ($) before a constant, where as in Variable one has

to write a dollar sign.

 Constants cannot be defined by simple assignment, they may only be defined using the

define() function.

 Constants may be defined and accessed anywhere without regard to variable scoping

rules.

 Once the Constants have been set, may not be redefined or undefined.

Valid and invalid constant names

// Valid constant names

define("ONE", "first thing");

define("TWO2", "second thing");

define("THREE_3", "third thing");

define("__THREE__", "third value");

// Invalid constant names

define("2TWO", "second thing");

PHP Magic constants

PHP provides a large number of predefined constants to any script which it runs.

There are five magical constants that change depending on where they are used. For example,

the value of __LINE__ depends on the line that it's used on in your script. These special

constants are case-insensitive and are as follows −

A few "magical" PHP constants are given below −

Sr.

No

Name & Description

1
__LINE__

The current line number of the file.

2
__FILE__

The full path and filename of the file. If used inside an include,the name of the included

file is returned. Since PHP 4.0.2, __FILE__ always contains an absolute path whereas

in older versions it contained relative path under some circumstances.

3
__FUNCTION__

The function name. (Added in PHP 4.3.0) As of PHP 5 this constant returns the

function name as it was declared (case-sensitive). In PHP 4 its value is always

lowercased.

4
__CLASS__

The class name. (Added in PHP 4.3.0) As of PHP 5 this constant returns the class name

as it was declared (case-sensitive). In PHP 4 its value is always lowercased.

5
__METHOD__

The class method name. (Added in PHP 5.0.0) The method name is returned as it was

declared (case-sensitive).

PHP - Operator Types

What is Operator? Simple answer can be given using expression 4 + 5 is equal to 9. Here 4

and 5 are called operands and + is called operator. PHP language supports following type of

operators.

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

Lets have a look on all operators one by one.

Arithmetic Operators

There are following arithmetic operators supported by PHP language −

Assume variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the

first

A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of

after an integer division

B % A will give 0

++ Increment operator, increases integer

value by one

A++ will give 11

-- Decrement operator, decreases

integer value by one

A-- will give 9

Comparison Operators

There are following comparison operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then −

Show Examples

https://www.tutorialspoint.com/php/php_arithmatic_operators_examples.htm
https://www.tutorialspoint.com/php/php_comparison_operators_examples.htm

Operator Description Example

== Checks if the value of two operands are equal or not, if yes then

condition becomes true.

(A == B) is

not true.

!= Checks if the value of two operands are equal or not, if values are

not equal then condition becomes true.

(A != B) is

true.

> Checks if the value of left operand is greater than the value of

right operand, if yes then condition becomes true.

(A > B) is not

true.

< Checks if the value of left operand is less than the value of right

operand, if yes then condition becomes true.

(A < B) is

true.

>= Checks if the value of left operand is greater than or equal to the

value of right operand, if yes then condition becomes true.

(A >= B) is

not true.

<= Checks if the value of left operand is less than or equal to the

value of right operand, if yes then condition becomes true.

(A <= B) is

true.

Logical Operators

There are following logical operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

and Called Logical AND operator. If both the operands are true then condition

becomes true.

(A and B) is

true.

or Called Logical OR Operator. If any of the two operands are non zero then

condition becomes true.

(A or B) is

true.

https://www.tutorialspoint.com/php/php_logical_operators_examples.htm

&& Called Logical AND operator. If both the operands are non zero then condition

becomes true.

(A && B) is

true.

|| Called Logical OR Operator. If any of the two operands are non zero then

condition becomes true.

(A || B) is

true.

! Called Logical NOT Operator. Use to reverses the logical state of its operand. If

a condition is true then Logical NOT operator will make false.

!(A && B) is

false.

Assignment Operators

There are following assignment operators supported by PHP language −

Show Examples

Operator Description Example

= Simple assignment operator, Assigns values from right

side operands to left side operand

C = A + B will assign

value of A + B into C

+= Add AND assignment operator, It adds right operand to

the left operand and assign the result to left operand

C += A is equivalent to

C = C + A

-= Subtract AND assignment operator, It subtracts right

operand from the left operand and assign the result to

left operand

C -= A is equivalent to

C = C - A

*= Multiply AND assignment operator, It multiplies right

operand with the left operand and assign the result to

left operand

C *= A is equivalent to

C = C * A

/= Divide AND assignment operator, It divides left

operand with the right operand and assign the result to

left operand

C /= A is equivalent to

C = C / A

https://www.tutorialspoint.com/php/php_assignment_operators_examples.htm

%= Modulus AND assignment operator, It takes modulus

using two operands and assign the result to left operand

C %= A is equivalent

to C = C % A

Conditional Operator

There is one more operator called conditional operator. This first evaluates an expression for a

true or false value and then execute one of the two given statements depending upon the result

of the evaluation. The conditional operator has this syntax −

Show Examples

Operator Description Example

? : Conditional

Expression

If Condition is true ? Then value X : Otherwise

value Y

Operators Categories

All the operators we have discussed above can be categorised into following categories −

 Unary prefix operators, which precede a single operand.

 Binary operators, which take two operands and perform a variety of arithmetic and

logical operations.

 The conditional operator (a ternary operator), which takes three operands and evaluates

either the second or third expression, depending on the evaluation of the first expression.

 Assignment operators, which assign a value to a variable.

Precedence of PHP Operators

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example, the

multiplication operator has higher precedence than the addition operator −

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher

precedence than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the lowest

appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity

https://www.tutorialspoint.com/php/php_conditional_operator_examples.htm

Unary ! ++ -- Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= Right to left

PHP - Decision Making

The if, elseif ...else and switch statements are used to take decision based on the different

condition.

You can use conditional statements in your code to make your decisions. PHP supports

following three decision making statements −

if...else statement − use this statement if you want to execute a set of code when a

condition is true and another if the condition is not true

 elseif statement − is used with the if...else statement to execute a set of code if one of

the several condition is true

 switch statement − is used if you want to select one of many blocks of code to be

executed, use the Switch statement. The switch statement is used to avoid long blocks of

if..elseif..else code.

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is false,

use the if....else statement.

Syntax

if (condition)

 code to be executed if condition is true;

else

 code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday,

Otherwise, it will output "Have a nice day!":

<html>

 <body>

 <?php

 $d = date("D");

 if ($d == "Fri")

 echo "Have a nice weekend!";

 else

 echo "Have a nice day!";

 ?>

 </body>

</html>

It will produce the following result −

Have a nice weekend!

The ElseIf Statement

If you want to execute some code if one of the several conditions are true use the elseif

statement

Syntax

if (condition)

 code to be executed if condition is true;

elseif (condition)

 code to be executed if condition is true;

else

 code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday, and

"Have a nice Sunday!" if the current day is Sunday. Otherwise, it will output "Have a nice day!"

−

<html>

 <body>

 <?php

 $d = date("D");

 if ($d == "Fri")

 echo "Have a nice weekend!";

 elseif ($d == "Sun")

 echo "Have a nice Sunday!";

 else

 echo "Have a nice day!";

 ?>

 </body>

</html>

It will produce the following result −

Have a nice Weekend!

The Switch Statement

If you want to select one of many blocks of code to be executed, use the Switch statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax

switch (expression){

 case label1:

 code to be executed if expression = label1;

 break;

 case label2:

 code to be executed if expression = label2;

 break;

 default:

 code to be executed

 if expression is different

 from both label1 and label2;

}

Example

The switch statement works in an unusual way. First it evaluates given expression then seeks a

lable to match the resulting value. If a matching value is found then the code associated with the

matching label will be executed or if none of the lable matches then statement will execute any

specified default code.

<html>

 <body>

 <?php

 $d = date("D");

 switch ($d){

 case "Mon":

 echo "Today is Monday";

 break;

 case "Tue":

 echo "Today is Tuesday";

 break;

 case "Wed":

 echo "Today is Wednesday";

 break;

 case "Thu":

 echo "Today is Thursday";

 break;

 case "Fri":

 echo "Today is Friday";

 break;

 case "Sat":

 echo "Today is Saturday";

 break;

 case "Sun":

 echo "Today is Sunday";

 break;

 default:

 echo "Wonder which day is this ?";

 }

 ?>

 </body>

</html>

It will produce the following result −

Today is Monday

PHP - Loop Types

Loops in PHP are used to execute the same block of code a specified number of times. PHP

supports following four loop types.

 for − loops through a block of code a specified number of times.

 while − loops through a block of code if and as long as a specified condition is true.

 do...while − loops through a block of code once, and then repeats the loop as long as a

special condition is true.

 foreach − loops through a block of code for each element in an array.

We will discuss about continue and break keywords used to control the loops execution.

The for loop statement

The for statement is used when you know how many times you want to execute a statement or a

block of statements.

Syntax

for (initialization; condition; increment){

 code to be executed;

}

The initializer is used to set the start value for the counter of the number of loop iterations. A

variable may be declared here for this purpose and it is traditional to name it $i.

Example

The following example makes five iterations and changes the assigned value of two variables on

each pass of the loop −

<html>

 <body>

 <?php

 $a = 0;

 $b = 0;

 for($i = 0; $i<5; $i++) {

 $a += 10;

 $b += 5;

 }

 echo ("At the end of the loop a = $a and b = $b");

 ?>

 </body>

</html>

This will produce the following result −

At the end of the loop a = 50 and b = 25

The while loop statement

The while statement will execute a block of code if and as long as a test expression is true.

If the test expression is true then the code block will be executed. After the code has executed

the test expression will again be evaluated and the loop will continue until the test expression is

found to be false.

Syntax

while (condition) {

 code to be executed;

}

Example

This example decrements a variable value on each iteration of the loop and the counter

increments until it reaches 10 when the evaluation is false and the loop ends.

<html>

 <body>

 <?php

 $i = 0;

 $num = 50;

 while($i < 10) {

 $num--;

 $i++;

 }

 echo ("Loop stopped at i = $i and num = $num");

 ?>

 </body>

</html>

This will produce the following result −

Loop stopped at i = 10 and num = 40

The do...while loop statement

The do...while statement will execute a block of code at least once - it then will repeat the loop

as long as a condition is true.

Syntax

do {

 code to be executed;

}

while (condition);

Example

The following example will increment the value of i at least once, and it will continue

incrementing the variable i as long as it has a value of less than 10 −

<html>

 <body>

 <?php

 $i = 0;

 $num = 0;

 do {

 $i++;

 }

 while($i < 10);

 echo ("Loop stopped at i = $i");

 ?>

 </body>

</html>

This will produce the following result −

Loop stopped at i = 10

The foreach loop statement

The foreach statement is used to loop through arrays. For each pass the value of the current

array element is assigned to $value and the array pointer is moved by one and in the next pass

next element will be processed.

Syntax

foreach (array as value) {

 code to be executed;

}

Example

Try out following example to list out the values of an array.

<html>

 <body>

 <?php

 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

The break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. It gives you full control and

whenever you want to exit from the loop you can come out. After coming out of a loop

immediate statement to the loop will be executed.

Example

In the following example condition test becomes true when the counter value reaches 3 and loop

terminates.

<html>

 <body>

 <?php

 $i = 0;

 while($i < 10) {

 $i++;

 if($i == 3)break;

 }

 echo ("Loop stopped at i = $i");

 ?>

 </body>

</html>

This will produce the following result −

Loop stopped at i = 3

The continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it does not

terminate the loop.

Just like the break statement the continue statement is situated inside the statement block

containing the code that the loop executes, preceded by a conditional test. For the pass

encountering continue statement, rest of the loop code is skipped and next pass starts.

Example

In the following example loop prints the value of array but for which condition becomes true it

just skip the code and next value is printed.

<html>

 <body>

 <?php

 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {

 if($value == 3)continue;

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 4

Value is 5

An array is a data structure that stores one or more similar type of values in a single value. For

example if you want to store 100 numbers then instead of defining 100 variables its easy to

define an array of 100 length.

There are three different kind of arrays and each array value is accessed using an ID c which is

called array index.

 Numeric array − An array with a numeric index. Values are stored and accessed in

linear fashion.

 Associative array − An array with strings as index. This stores element values in

association with key values rather than in a strict linear index order.

 Multidimensional array − An array containing one or more arrays and values are

accessed using multiple indices

Numeric Array

These arrays can store numbers, strings and any object but their index will be represented by

numbers. By default array index starts from zero.

Example

Following is the example showing how to create and access numeric arrays.

Here we have used array() function to create array. This function is explained in function

reference.

<html>

 <body>

 <?php

 /* First method to create array. */

 $numbers = array(1, 2, 3, 4, 5);

 foreach($numbers as $value) {

 echo "Value is $value
";

 }

 /* Second method to create array. */

 $numbers[0] = "one";

 $numbers[1] = "two";

 $numbers[2] = "three";

 $numbers[3] = "four";

 $numbers[4] = "five";

 foreach($numbers as $value) {

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

Value is one

Value is two

Value is three

Value is four

Value is five

Associative Arrays

The associative arrays are very similar to numeric arrays in term of functionality but they are

different in terms of their index. Associative array will have their index as string so that you can

establish a strong association between key and values.

To store the salaries of employees in an array, a numerically indexed array would not be the

best choice. Instead, we could use the employees names as the keys in our associative array, and

the value would be their respective salary.

Example

<html>

 <body>

 <?php

 /* First method to associate create array. */

 $salaries = array("mohammad" => 2000, "qadir" => 1000, "zara" => 500);

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 /* Second method to create array. */

 $salaries['mohammad'] = "high";

 $salaries['qadir'] = "medium";

 $salaries['zara'] = "low";

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 ?>

 </body>

</html>

This will produce the following result −

Salary of mohammad is 2000

Salary of qadir is 1000

Salary of zara is 500

Salary of mohammad is high

Salary of qadir is medium

Salary of zara is low

Multidimensional Arrays

A multi-dimensional array each element in the main array can also be an array. And each

element in the sub-array can be an array, and so on. Values in the multi-dimensional array are

accessed using multiple index.

Example

In this example we create a two dimensional array to store marks of three students in three

subjects −

This example is an associative array, you can create numeric array in the same fashion.

<html>

 <body>

 <?php

 $marks = array(

 "mohammad" => array (

 "physics" => 35,

 "maths" => 30,

 "chemistry" => 39

),

 "qadir" => array (

 "physics" => 30,

 "maths" => 32,

 "chemistry" => 29

),

 "zara" => array (

 "physics" => 31,

 "maths" => 22,

 "chemistry" => 39

)

);

 /* Accessing multi-dimensional array values */

 echo "Marks for mohammad in physics : " ;

 echo $marks['mohammad']['physics'] . "
";

 echo "Marks for qadir in maths : ";

 echo $marks['qadir']['maths'] . "
";

 echo "Marks for zara in chemistry : " ;

 echo $marks['zara']['chemistry'] . "
";

 ?>

 </body>

</html>

This will produce the following result −

Marks for mohammad in physics : 35

Marks for qadir in maths : 32

Marks for zara in chemistry : 39

PHP - Strings

They are sequences of characters, like "PHP supports string operations".

Built-in string functions is given in function reference PHP String Functions

Following are valid examples of string

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace

variables with their values as well as specially interpreting certain character sequences.

<?php

 $variable = "name";

 $literally = 'My $variable will not print!\\n';

 print($literally);

 print "
";

 $literally = "My $variable will print!\\n";

 print($literally);

http://in.php.net/manual/en/ref.strings.php

?>

This will produce the following result −

My $variable will not print!\n

My name will print!\n

There are no artificial limits on string length - within the bounds of available memory, you

ought to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following

two ways by PHP −

 Certain character sequences beginning with backslash (\) are replaced with special

characters

 Variable names (starting with $) are replaced with string representations of their values.

The escape-sequence replacements are −

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

 \t is replaced by the tab character

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

 \\ is replaced by a single backslash (\)

String Concatenation Operator

To concatenate two string variables together, use the dot (.) operator −

<?php

 $string1="Hello World";

 $string2="1234";

 echo $string1 . " " . $string2;

?>

This will produce the following result −

Hello World 1234

If we look at the code above you see that we used the concatenation operator two times. This is

because we had to insert a third string.

Between the two string variables we added a string with a single character, an empty space, to

separate the two variables.

Using the strlen() function

The strlen() function is used to find the length of a string.

Let's find the length of our string "Hello world!" −

<?php

 echo strlen("Hello world!");

?>

This will produce the following result −

12

The length of a string is often used in loops or other functions, when it is important to know

when the string ends. (i.e. in a loop, we would want to stop the loop after the last character in

the string)

Using the strpos() function

The strpos() function is used to search for a string or character within a string.

If a match is found in the string, this function will return the position of the first match. If no

match is found, it will return FALSE.

Let's see if we can find the string "world" in our string −

<?php

 echo strpos("Hello world!","world");

?>

This will produce the following result −

 6

As you see the position of the string "world" in our string is position 6. The reason that it is 6,

and not 7, is that the first position in the string is 0, and not 1.

Perl – Introduction

Perl is a general-purpose programming language originally developed for text manipulation and

now used for a wide range of tasks including system administration, web development, network

programming, GUI development, and more.

What is Perl?

 Perl is a stable, cross platform programming language.

 Though Perl is not officially an acronym but few people used it as Practical Extraction

and Report Language.

 It is used for mission critical projects in the public and private sectors.

 Perl is an Open Source software, licensed under its Artistic License, or the GNU General

Public License (GPL).

 Perl was created by Larry Wall.

 Perl 1.0 was released to usenet's alt.comp.sources in 1987.

 At the time of writing this tutorial, the latest version of perl was 5.16.2.

 Perl is listed in the Oxford English Dictionary.

PC Magazine announced Perl as the finalist for its 1998 Technical Excellence Award in the

Development Tool category.

Perl Features

 Perl takes the best features from other languages, such as C, awk, sed, sh, and BASIC,

among others.

 Perls database integration interface DBI supports third-party databases including Oracle,

Sybase, Postgres, MySQL and others.

 Perl works with HTML, XML, and other mark-up languages.

 Perl supports Unicode.

 Perl is Y2K compliant.

 Perl supports both procedural and object-oriented programming.

 Perl interfaces with external C/C++ libraries through XS or SWIG.

 Perl is extensible. There are over 20,000 third party modules available from the

Comprehensive Perl Archive Network (CPAN).

 The Perl interpreter can be embedded into other systems.

Perl and the Web

 Perl used to be the most popular web programming language due to its text manipulation

capabilities and rapid development cycle.

 Perl is widely known as "the duct-tape of the Internet".

 Perl can handle encrypted Web data, including e-commerce transactions.

 Perl can be embedded into web servers to speed up processing by as much as 2000%.

 Perl's mod_perl allows the Apache web server to embed a Perl interpreter.

 Perl's DBI package makes web-database integration easy.

Perl is Interpreted

https://cpan.perl.org/
https://www.google.com/search?q=the%20duct-tape%20of%20the%20Internet
https://perl.apache.org/
https://dbi.perl.org/

Perl is an interpreted language, which means that your code can be run as is, without a

compilation stage that creates a non portable executable program.

Traditional compilers convert programs into machine language. When you run a Perl program,

it's first compiled into a byte code, which is then converted (as the program runs) into machine

instructions. So it is not quite the same as shells, or Tcl, which are strictly interpreted without

an intermediate representation.

It is also not like most versions of C or C++, which are compiled directly into a machine

dependent format. It is somewhere in between, along with Python and awk and Emacs .elc files.

Lexing and Parsing

Perl programmers spend a lot of time munging data: reading it in, transforming it, and writing

out the results. Perl’s great at this ad hoc text transformation, with all sorts of string manipulation

tools, including regular expressions.

Regular expressions will only get you so far: witness the repeated advice that you cannot parse

HTML or XML with regular expressions themselves. When Perl’s builtin text processing tools

aren’t enough, you have to turn to something more powerful.

That something is parsing.

An Overview of Lexing and Parsing

For a more formal discussion of what exactly lexing and parsing are, start with Wikipedia’s

definitions: Lexing and Parsing.

Unfortunately, when people use the word parsing, they sometimes include the idea of lexing.

Other times they don’t. This can cause confusion, but I’ll try to keep them clear. Such situations

arise with other words, and our minds usually resolve the specific meaning intended by analysing

the context in which the word is used. So, keep your mind in mind.

The lex phase and the parse phase can be combined into a single process, but I advocate always

keeping them separate. Trust me for a moment; I’ll explain shortly. If you’re having trouble

keeping the ideas separate, note that the phases very conveniently run in alphabetical order: first

we lex, and then we parse.

But Why Study Lexing and Parsing?

There are many situations where the only path to a solution requires a lexer and a parser:

1. Running a program

This is trivial to understand, but not to implement. In order to run a program we need to

set up a range of pre-conditions:

o Define the language, perhaps called Perl

o Write a compiler (combined lexer and parser) for that language’s grammar

http://en.wikipedia.org/wiki/Lexing
http://en.wikipedia.org/wiki/Parsing

o Write a program in that language

o Lex and parse the source code

After all, it must be syntactically correct before we run it. If not, we display

syntax errors. The real point of this step is to determine the

programmer’s intention, that is, the reason for writing the code. We don’t run the

code in this step, but we do get output. How do we do that?

o Run the code

Then we can gaze at the output which, hopefully, is correct. Otherwise, perhaps,

we must find and fix logic errors.

2. Rendering a web page of HTML + content

The steps are identical to those of the first example, with HTML replacing Perl, although

I can’t bring myself to call writing HTML writing a program.

This time, we’re asking: What is the web page designer’s intention. What would they like

to render and how? Of course, syntax checking is far looser that with a programming

language, but must still be undertaken. For instance, here’s an example of clearly-corrupt

HTML which can be parsed by Marpa:

 <title>Short</title><p>Text</head><head>

See Marpa::HTML for more details. So far, I have used Marpa::R2 in all my work, which

does not involve HTML.

3. Rendering an image, perhaps in SVG

Consider this file, written in the DOT language, as used by the Graphviz graph visualizer

(teamwork.dot):

 digraph Perl

 {

 graph [rankdir="LR"]

 node [fontsize="12pt" shape="rectangle" style="filled, solid"]

 edge [color="grey"]

 "Teamwork" [fillcolor="yellow"]

 "Victory" [fillcolor="red"]

 "Teamwork" -> "Victory" [label="is the key to"]

 }

Given this “program”, a renderer give effects to the author’s intention by rendering an

image:

http://www.jeffreykegler.com/marpa
https://metacpan.org/pod/release/JKEGL/Marpa-HTML-0.112000/lib/Marpa/HTML.pm
https://metacpan.org/pod/Marpa::R2
http://www.graphviz.org/content/dot-language
http://www.graphviz.org/

What’s required to do that? As above, lex, parse, render. Using Graphviz’s dot command

to carry out these tasks, we would run:

 shell> dot -Tsvg teamwork.dot > teamwork.svg

Note: Files used in these examples can be downloaded

from http://savage.net.au/Ron/html/graphviz2.marpa/teamwork.tgz.

The link to the DOT language points to a definition of DOT’s syntax, written in a

somewhat casual version of BNF: Backus-Naur Form. This is significant, as it’s usually

straight-forward to translate a BNF description of a language into code within a lexer and

parser.

4. Rendering that same image, using a different language in the input file

Suppose that you decide that the Graphviz language is too complex, and hence you write

a wrapper around it, so end users can code in a simplified version of that language. This

actually happened, with the original effort available in the now-obsolete Perl

module Graph::Easy. Tels, the author, devised his own very clever little language, which

he called Graph::Easy.

When I took over maintenance of Graph::Easy, I found the code too complex to read, let

alone work on, so I wrote another implementation of the lexer and parser, released

as Graph::Easy::Marpa. I’ll have much more to say about that in another article. For now,

let’s discuss the previous graph rewritten in Graph::Easy (teamwork.easy):

 graph {rankdir: LR}

 node {fontsize: 12pt; shape: rectangle; style: filled, solid}

 edge {color: grey}

 [Teamwork]{fillcolor: yellow}

 -> {label: is the key to}

 [Victory]{fillcolor: red}

That’s simpler for sure, but how does Graph::Easy::Marpa work? Easy: lex, parse,

render. More samples of Graph::Easy::Marpa’s work are my Graph::Easy::Marpa

examples.

It should be clear by now that lexing and parsing are in fact widespread, although they often

operate out of sight, with only their rendered output visible to the average programmer, user, or

web surfer.

All of these problems have in common a complex but well-structured source text format, with a

bit of hand-waving over the tacky details available to authors of documents in HTML. In each

case, it is the responsibility of the programmer writing the lexer and parser to honour the

http://savage.net.au/Ron/html/graphviz2.marpa/teamwork.tgz
http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
https://metacpan.org/pod/Graph::Easy
http://en.wikipedia.org/wiki/Little_languages
http://bloodgate.com/perl/graph/manual/
https://metacpan.org/pod/Graph::Easy
https://metacpan.org/pod/Graph::Easy::Marpa
https://metacpan.org/pod/Graph::Easy::Marpa
https://metacpan.org/pod/Graph::Easy::Marpa
https://web.archive.org/web/20121010094737/http:/savage.net.au/Perl-modules/html/graph.easy.marpa/
https://web.archive.org/web/20121010094737/http:/savage.net.au/Perl-modules/html/graph.easy.marpa/

intention of the original text’s author. We can only do that by recognizing each token in the input

as a discrete unit of meaning (where a word such as print means to output something of the

author’s choosing), and by bringing that meaning to fruition (for print, to make the output visible

on a device).

With all that I can safely claim that the ubiquity and success of lexing and parsing justify their

recognition as vital constituents in the world of software engineering. Why study them indeed!

